Wavelets: First Steps

Nico M. Temme

Abstract. This chapter gives a short elementary introduction to wavelets. We
give a few properties of continuous wavelets, a few remarks on multiresolution
analysis, and the construction for the first few spline wavelets as solutions of
dilation equations. We also describe an example of the compactly supported
orthonormal Daubechies wavelets. All this will be discussed in more depth in
the following chapters.

§1 About the history of wavelets

Wavelets were introduced at the beginning of the ’eighties by J. Morlet, a French
geophysicist at Elf-Aquitane, as a tool for signal analysis in view of applications
for the analysis of seismic data. The numerical success of Morlet prompted A.
Grossmann to make a more detailed study of the wavelet transform, which resulted
in a paper giving the mathematical foundations (see Grossmann & Morlet [7]), where
the title of the paper still shows the name wavelets of constant shape. In 1985,
the harmonic analyst Y. Meyer became aware of this theory and he recognized
many classical results inside it. Meyer pointed out to Grossmann and Morlet that
there was a connection between their signal analysis methods and existing, powerful
techniques in the mathematical study of singular integral operators. Then Ingrid
Daubechies became involved, and all this resulted in the first construction of a
special type of frames (see Daubechies, Grossmann & Meyer [3]), (the concept frame
generalizes the concept basis in a Hilbert space). It also was the start of a cross-
fertilization between the signal analysis applications and the purely mathematical
aspects of techniques based on dilations and translations.

In 1988 Daubechies provided a major breakthrough by constructing families
of orthonormal wavelets with compact support (see Daubechies [4]). In this she
was inspired by work of Mallat and Meyer in the field of multiresolution analysis,
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and by Mallat’s algorithms in which he used this analysis for decomposition and
reconstruction of images (see Mallat [9, 10]). .

All these activities have created quite a stir among mathematicians. Apa-rt from
applications to signal analysis, orthonormal wavelets shoulfi be useful in physics also.
A first application, to quantum field theory, can be found in Bfa.ttle & Fede{'bush (1].
From the point of view of numerical analysis, interest arose in fc.zst techniques (by
analogy with fast Fourier transformation), with which certain integral operators
can be transformed into other operators with dominant diagonals; (see Beylkin,
Coifman & Rokhlin [2)). ] .

An excellent recent book on wavelets is Daubechies [5]. In this chapter we have
used the introductory paper of Strang [11].

§2 The continuous wavelet transform

Wavelets constitute a family of functions derived from one single fur.1ction, and
indexed by two labels, one for position and one for frequency. More explicitly, when
we start with the function g, we define

—b
9a.b($)=—\/1T?—|g<Ia ), a#0, beR.

In the theory some conditions on g are needed. We request g € L2(IR) such that

¢y = [ 17 0P dt <
g is the Fourier transform defined by

76 = [ gwe=ta
Since we require that C, is finite, the integrand defining C, should be integrable at
€ = 0. This implies that §(0) = 0, which says that the mean value of the wavelet g
should be zero: ff’m g(z)dz = 0. So g must change its signs on R; g(z) will also
decay to 0 as z tends to +oo.

In Figure 1, we take the wavelet

_1z2
2

9(z) = (1 -z%)e2

the Mezican hat. The graph of g looks a bit like a transverse section of a Mexican
hat, whence the name. Up to a constant, g is the second derivative of the Gaussian
exp(—1z?%). We know that

3(6) = Var g2 e3¢
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Figure 1. The Mexican hat and dilated shifts.

and that Cy = 2.

The parameter b in g, s gives the position of the wavelet, while the dilation
parameter a governs its frequency. For |a| <« 1, the wavelet g, is a very highly
concentrated “shrunken” version of g, with frequency content mostly in the high
frequency range. Conversely, for |a| 3> 1, the wavelet g4 is very much spread out
and has mostly low frequencies.

Now one can define the continuous wavelet transform of a function f by writing

Fla,b) = /_ ” fe)gent@) d.

For all f € L?(R) we have an inversion formula for the continuous wavelet trans-
form, that is we can recover f when F(a,b) is given. The inversion formula is a
double integral over the parameters a and b. It reads:

f@)=c;? /_ : [ /_ Z F(a,b)ga,s(z) db] %‘;—

where Cj is introduced earlier.

In Grossmann, Kronland-Martinet & Morlet (8] one can find how to interpret
the role of the parameters a and b, by depicting horizontal and vertical lines in the
(a,b)—plane, and by identifying these with quantities from Fourier analysis.

An important topic in wavelet theory is the discretization of F(a,b). We would
like to have the wavelet g such that f already be can recovered from F—values on
a certain grid in the (a,b)—plane, that is from the values

F(279,279k), jkeZ.

In particular it is very satisfactory if g equals a function 1 which has the property
that the wavelets ] _
2%y (Pz—k), jkeZ
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constitute an orthonormal basis of L2(R). The Mexican hat does not have this
property.

A wavelet 1 that does have this property is called the mother of the wavelets.
Often, prior to the construction of 1, one constructs a function ¢ such that, among
others, the functions {¢(z—k)}, k € ZZ constitute an orthonormal system. One calls
¢ the father of the wavelets, when this orthonormal system can be supplemented to
a full orthonormal basis of L?(IR) with the functions

22y (Pz—k), jEZy, keZ

(for some mother wavelet ).

§3 A few remarks on multiresolution analysis

This theory can be nicely described in the framework of the so-called multiresolution
analysis of L*(R). A multiresolution analysis consists in breaking up L?(R) into a
ladder of closed subspaces V;:

CcVocVicVe VooV Ch--,

with V;, — L?(R) as m — —oo. The subspaces Vj, are all obtained from V; by a
dilation rule.

To explain this, we assume that we have chosen the function space Vy with an
appropriate basis. We require next that the larger space V_; contains all functions
of Wy, according to the following rule:

feVo<e f(2)e V..

So when f is an oscillating function in Vp, the function that oscillates ‘twice as fast’
‘s an element of V_;. Intuitively, V_; is ‘twice as large’ as Vj. On the other hand,
+ prescribe that Vi contains all functions f of Vp that oscillate ‘twice as slow’

few <= f21)ew.
All other spaces are constructed in the same way. We prescribe
JEVm <= f(2) € Vo1, meZ

In wavelet theory it will be assumed that V; is generated by the integer trans-
lates ¢on(z) = @¢(z — n) of one single function ¢, the father. When indeed the set
of functions {¢(- — n) }nez constitute an orthonormal basis of Vp (this can be made
more general into the direction of a Riesz basis), then each f € Vj can be written

as
co

f=3" tadon, doa(z)=0(z—n).

n=-—oo
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Now, since ¢ € Vp, and Vo C V_1, we have ¢ € V_;. But the above dilation property
then implies that ¢(271-) € Vo. It follows that we can expand

o0

$(3z)= Y cad(z—n), z€R,

n=-—oo

for some coefficients {c,}. We can rewrite this in the form

$(z) =2 fi hnd(2z-n), z€R,

n=-—00

where the square root in front of the sum is for normalization. The numbers h,, are
called the filter coefficients of the function ¢.

We infer that, after a few assumptions on the function ¢ in order to generate
a multiresolution analysis, we arrive at an exciting property of this function: it
satisfies the above two-scale difference equation. This name reflects the fact that
the equation relates translates of scaled versions of the same function, involving two
different scales.

When we require a normalization, say f:o ¢(z) dr = 1, then we obtain
1 =/°° d:(z)dz:\/ﬁZh,,/ 62z — n)dz
1 o _ 1
= T/_Ez:hn/_mqs(zz-n)al(m:— n) = ﬁZh,.,

yielding

> m=va

n=-—oo

The associated wavelet 9 (the mother of the wavelets) is then generated through ¢
by the definition

¥(z) = V2 i gn$22—n), go=(-1)"hi_n

n=-—0o0

Other related functions are
Pman(T) = 273m$(2 ™z —n), m,n€ Z,
and the associated wavelets

Ymn(z) = 27327z —n), mneZ.
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In the previous section, we assumed that the wavelet g has zero mean value; re-
quiring this for the present wavelet ¢, we observe that the coefficients h,, should

satisfy
> (~1D)ha=0.

n=-—0o0

Under certain conditions on ¢, the wavelet 1 inherits the mean zero value from its
generator ¢.

§4 Simple solutions of dilation equations

The two-scale difference equation (i.e., the dilation equation) for ¢ of the previous
section becomes especially interesting when only a finite number of the coefficients
hn are non-zero. This has important consequences for the construction of compactly
supported orthogonal wavelets. We have obtained the dilation equation through the
multiresolution approach. We can start differently, and take the equation

<]

$(x)= ) é(2r-n), zeR,

n=--00

as the first relation available. Note that we use ¢, = v/2h,,, where the numbers h,
are introduced in the previous section; in later chapters it is more convenient to
work with hn.

We can look for solutions of the dilation equation for a given set {c.}. We
issume that ) ¢, = 2, as a normalization. It appears that, when a solution of the
lilation equation exists, it is unique. The function ¢ solving the dilation equation
s also called the scaling function, and, as we learned in the previous section, the
father of the wavelets.

In Daubechies [4] the first constructions of orthonormal bases of wavelets with
compact support are given. The theory for finite equations is given in a more general
setting in Daubechies & Lagarias [6]. That is, for equations of the form

N
f@) = cnflaz—B),

n=0

where a > 1 and fo < f1 < --- < f3, are real constants, and z takes real values,
while the ¢, are complex constants.

‘We mention a few solutions for the dilation equation

$z)=) cad(@z—n), Y =2,
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and we give the corresponding wavelet

Y(@) =Y (~1)"c1-n ¢(2z — n),

n

(for real c,,), where only a finite number of h,, is assumed to be different from zero.
The following examples and the pictures are taken from Strang [11].

Example 1. Take ¢p = 2 and all remaining ¢, equal to zero. The Dirac delta
function satifies 6(z) = 26(2z), and hence is a solution. The Dirac function is not
a regular function; the idea that we have is a ‘function’ with compact support (of
length zero): a needle at the origin.

Example 2. Take ¢cp = ¢; = 1 and the remaining ¢, equal to zero. A solution of
the dilation equation is the box function

{1, 0<z<1,
¢(z) = {0, otherwise,

with a support of unit length. The corresponding wavelet is ¢¥(z) = ¢(2z)—¢(2z—1),
the so-called Haar wavelet, explicitly given by

1, ifo<z<yi,
w(x)= ""1a lf%s.'l:(l,
0, otherwise.

The box function and the Haar wavelet are orthogonal with respect to their own
translates:

[ s@ee-maz=0, [ weve-mi=0, nez\io
The resulting ¥mn,

Ymn(@) =237 ("2 - ), mineZ,

have the desired property: they constitute an orthonormal basis for L2(R). Histo:
ically the Haar function was the original wavelet (but with poor approximation).

Example 3. Takeco = 1,c1 = 1,00 = -;- and the remaining c,, equal to zero. A
solution of the dilation equation is the hat function
z, fo<z<l,
¢(:r)={2—z, ifl1<z<2,
0, otherwise,
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Figure 2. The box function and the hat function.

Figure 3. The wavelets for the box function and the hat function.

which has a support of two unit lengths. It is the linear spline function. The
corresponding wavelet is continuous, and given by

P(z) = ¢(22) —36(2z — 1) —34(2z + 1).

The support of this function is [-1, 2]. From a picture of the hat function it is easily
seen that ¢(x) and ¢(z & 1) are not orthogonal on IR. Hence the translates of ¢
cannot constitute an orthogonal set. We remark that the box function and the has
function are related by convolution. That is, let us denote the convolution of twe
functions f, g by (f*g)(z) := ffm f(z—9)g(y) dy, provided that the integral exists
Let us denote the box function and the hat function of the previous examples by
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¢B, ¢H, respectively. Then we have

oo 1 z
J_tsa=sssar= [ bae-vdy= [ bat)du=pute)

In other words: ¢y = ¢ * ¢p.

Example 4. Take cg =c3 = 1 ,C1 =Cp = and the remaining ¢, equal to zero. A
solution of the dilation equatlon is the functlon
z2, fo<zr<l,
(z) = 2-2r246x-3, fl<zr<?
(8 —1)? if2<zr<3,
0, otherwise,

which has a support of three unit lengths. It is the quadratic spline function, a
C'—function. The corresponding wavelet is also a C!—function, and given by

¥(z) =36(2z) —19(2z — 1) —36(2x + 1) +19(2z + 2).

The support of this function is {1, 2].

Again, this spline follows from convolution. Now we have ¢ = ¢p * ¢p *¢p =
¢B * ¢y, a three-fold convolution of the box function, or a simple convolution of
box and hat function. In a similar way higher order splines can be constructed by
taking n—fold convolutions of the box function. All these splines are solutions of
a corresponding dilation equation, of which the coefficients easily follow from the
above pattern. The next one, the cubic spline, has coefficients 1/8, 4/8,6/8,4/8,1/8;
note the binomial structure.

Observe from the examples that, when n successive coefficients are given, with
the remaining equal to zero, the solution ¢ is compactly supported on an interval
[0,7 — 1] of length n — 1. Starting from spline functions one can, in fact, con-
struct wavelets with an arbitrarily high number of continuous derivatives. In these
constructions the initial function ¢ is compactly supported, but the ¢(- — n) are
not orthogonal, as illustrated by Example 3 and Example 4. It is possible (see
Daubechies [4]) to construct an associated function $, of which the shifts ¢(- — n)
constitute an orthonormal set, but the function @ is not compactly supported, re-
sulting in a non-compactly supported wavelet .

§5 How to construct solutions of dilation equations?

In the above examples we assigned the ¢, = V2 h,, and we proposed the solution,
of the dilation equation

$(z) = V2 i hn¢(2z—-n), z€R

n=—0o0
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without construction. The question may arise, how to construct the solution ¢ from
a given set of h,. The answer is obtained by Fourier analysis. Define

e e 3
B©) = [ dwetar,
—00
then from the dilation equation we obtain

3O = VI b [ plaz—r)e s

=HGo [ ~ by)e 2 dy

= H (3£) $ (3£) .

The symbol H(£) = \—}-5 S hne¢ is the crucial function in this theory. Note that
H(0) = 1. The above result may be iterated, and we find

N
$() = [II H (2“1'5)] é(27Ne), N=1,2,....
i=1
Taking N — oo and observing that $(0) = [¢(z) dz = 1, we find

o0
o© =141 @7%).
=1
Take, as in Example 1, ¢g = 2,hg = V2, then we find H(¢) = 1 and $6) = 1,
indeed, the transform of the Dirac delta function. For co =c1 = 1,hg = hy = 1/ V2
(Example 2) the products of the H—function are geometric series:

1—e#%

HGOH(GE) =1+ e+ e = (s,

Taking a product with N such H—functions, and letting N — oo, this approaches
[1 — exp(—1£)]/(i€). So we obtain

—~ 1 .
ae) = /0 ¢ dz,

the transform of the box function. Observe that the above methods lead to the
curious formula -
. sinz
279g) = .
l I cos(277z) o

=1
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4(x)=D, (x)

Figure 4. The Daubechies D4 and corresponding wavelet Wjy.

86 Daubechies’ wavelets

The breakthrough in the construction of compactly supported wavelet, providing
at the same time an orthonormal set of wavelets for Z?(IR), came in Daubechies [4];
(see also [5]). We give her solution D4, which reads

é(z) = V2[hod(22) + had(2z — 1) + hod(2z — 2) + hap(2z — 3)]

with
ho=L (14 V3), =22 (34 v3),
h2=g(3—\/§),h3=%—-2~(1—\/§).

To draw a picture of this, and of the other scaling functions that solve a dilation
equation of the form ¢(z) = V23 hnd(2x — n), one may iterate

$i(2) =v2> hnpj1(2x—n), =12, ..,

with the box function as starting function ¢o(z). Then ¢;(z) — ¢(z) as j — oo.
In Figure 4, we give a picture of D4 and of the corresponding wavelet Wy, defined
by

¥(2) = V2[hi(22) - hop(2z — 1) ~ had(2z + 1) + haop(2z + 2)].

The coefficients hg, h1, h2, and hs satisfy the following set of equations

R+ R+ RE+ R =1,
hohga + hi1hs =0,

hs —hao+ hy —hp =0,

Ohs — 1hg + 2h; — 3ho = 0.

In later chapters the use and construction of Dy, and of other Daubechies wavelets,
will receive detailed attention.
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